35 research outputs found

    A Data-driven Approach for Estimating the Fundamental Diagram

    Get PDF
    The fundamental diagram links average speed to density or traffic flow. An analytic form of this diagram, with its comprehensive and predictive power, is required in a number of problems. This paper argues, however, that, in some assessment studies, such a form is an unnecessary constraint resulting in a loss of accuracy. A non-analytical fundamental diagram which best fits the empirical data and respects the relationships between traffic variables is developed in this paper. In order to obtain an unbiased fundamental diagram, separating congested and non-congested observations is necessary. When defining congestion in parallel with a safety constraint, the density separating congestion and non-congestion appears as a decreasing function of the flow and not as a single critical density value. This function is here identified and used. Two calibration techniques - a shortest path algorithm and a quadratic optimization with linear constraints - are presented, tested, compared and validated

    A vehicle-to-infrastructure communication based algorithm for urban traffic control

    Full text link
    We present in this paper a new algorithm for urban traffic light control with mixed traffic (communicating and non communicating vehicles) and mixed infrastructure (equipped and unequipped junctions). We call equipped junction here a junction with a traffic light signal (TLS) controlled by a road side unit (RSU). On such a junction, the RSU manifests its connectedness to equipped vehicles by broadcasting its communication address and geographical coordinates. The RSU builds a map of connected vehicles approaching and leaving the junction. The algorithm allows the RSU to select a traffic phase, based on the built map. The selected traffic phase is applied by the TLS; and both equipped and unequipped vehicles must respect it. The traffic management is in feedback on the traffic demand of communicating vehicles. We simulated the vehicular traffic as well as the communications. The two simulations are combined in a closed loop with visualization and monitoring interfaces. Several indicators on vehicular traffic (mean travel time, ended vehicles) and IEEE 802.11p communication performances (end-to-end delay, throughput) are derived and illustrated in three dimension maps. We then extended the traffic control to a urban road network where we also varied the number of equipped junctions. Other indicators are shown for road traffic performances in the road network case, where high gains are experienced in the simulation results.Comment: 6 page

    Upper bounds for the travel time on traffic systems

    Get PDF
    A key measure of performance and comfort in a road traffic network is the travel time that the users of the network experience to complete their journeys. Travel times on road traffic networks are stochastic, highly variable, and dependent on several parameters. It is, therefore, necessary to have good indicators and measures of their variations. In this article, we extend a recent approach for the derivation of deterministic bounds on the travel time in a road traffic network (Farhi, Haj-Salem and Lebacque 2013). The approach consists in using an algebraic formulation of the cell-transmission traffic model on a ring road, where the car-dynamics is seen as a linear min-plus system. The impulse response of the system is derived analytically, and is interpreted as what is called a service curve in the network calculus theory (where the road is seen as a server). The basic results of the latter theory are then used to derive an upper bound for the travel time through the ring road. We consider in this article open systems rather than closed ones. We define a set of elementary traffic systems and an operator for the concatenation of such systems. We show that the traffic system of any road itinerary can be built by concatenating a number of elementary traffic systems. The concatenation of systems consists in giving a service guarantee of the resulting system in function of service guarantees of the composed systems. We illustrate this approach with a numerical example, where we compute an upper bound for the travel time on a given route in a urban network.Comment: 11 page

    A semi-decentralized control strategy for urban traffic

    Get PDF
    We present in this article a semi-decentralized approach for urban traffic control, based on the TUC (Traffic responsive Urban Control) strategy. We assume that the control is centralized as in the TUC strategy, but we introduce a contention time window inside the cycle time, where antagonistic stages alternate a priority rule. The priority rule is set by applying green colours for given stages and yellow colours for antagonistic ones, in such a way that the stages with green colour have priority over the ones with yellow colour. The idea of introducing this time window is to reduce the red time inside the cycle, and by that, increase the capacity of the network junctions. In practice, the priority rule could be applied using vehicle-to-vehicle (v2v) or vehicle-to-infrastructure (v2i) communications. The vehicles having the priority pass almost normally through the junction, while the others reduce their speed and yield the way. We propose a model for the dynamics and the control of such a system. The model is still formulated as a linear quadratic problem, for which the feedback control law is calculated off-line, and applied in real time. The model is implemented using the Simulation of Urban MObility (SUMO) tool in a small regular (American-like) network configuration. The results are presented and compared to the classical TUC strategy.Comment: 16 page

    Public Transport Priority for Multimodal Urban Traffic Control

    Get PDF
    In order to improve the travel time of surface public transport vehicles (bus, tramway, etc.), several cities use Urban Traffic Control (UTC) systems enabling to give priority to public transport. This paper reviews these systems. Further on after a debate on their insufficiencies in the global regulation of the urban traffic on a whole network, the paper proposes intermodal regulation strategies, operating on intersection traffic lights to regulate the traffic, favouring the public transport. All these strategies are based on the Linear Quadratic (LQ) optimal control theory, but they are different in their ways of taking into account the public transport in the optimization problem. The simulation tests are carried out in a network of eight intersections and two public transport lines.Fil: Bhouri, Neila. Université Paris Est; FranciaFil: Mayorano, Fernando Javier. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Lotito, Pablo Andres. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Haj Salem, Habib. Université Paris Est; FranciaFil: Lebacque, Jean Patrick. Université Paris Est; Franci
    corecore